
PREPRINT: Accepted at the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)PREPRINT: Accepted at the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)

Meta-Learned Kernel For Blind Super-Resolution Kernel Estimation

Royson Lee1,2*, Rui Li2, Stylianos Venieris2

Timothy Hospedales2,3, Ferenc Huszár1, Nicholas D. Lane1,4

1 University of Cambridge, UK 2 Samsung AI Center, Cambridge, UK
3 University of Edinburgh, UK 4 Flower Labs

Abstract

Recent image degradation estimation methods have en-
abled single-image super-resolution (SR) approaches to
better upsample real-world images. Among these methods,
explicit kernel estimation approaches have demonstrated
unprecedented performance at handling unknown degrada-
tions. Nonetheless, a number of limitations constrain their
efficacy when used by downstream SR models. Specifically,
this family of methods yields i) excessive inference time due
to long per-image adaptation times and ii) inferior image
fidelity due to kernel mismatch. In this work, we introduce
a learning-to-learn approach that meta-learns from the in-
formation contained in a distribution of images, thereby en-
abling significantly faster adaptation to new images with
substantially improved performance in both kernel estima-
tion and image fidelity. Specifically, we meta-train a kernel-
generating GAN, named MetaKernelGAN, on a range of
tasks, such that when a new image is presented, the gen-
erator starts from an informed kernel estimate and the dis-
criminator starts with a strong capability to distinguish be-
tween patch distributions. Compared with state-of-the-art
methods, our experiments show that MetaKernelGAN bet-
ter estimates the magnitude and covariance of the kernel,
leading to state-of-the-art blind SR results within a simi-
lar computational regime when combined with a non-blind
SR model. Through supervised learning of an unsupervised
learner, our method maintains the generalizability of the
unsupervised learner, improves the optimization stability of
kernel estimation, and hence image adaptation, and leads to
a faster inference with a speedup between 14.24 to 102.1×
over existing methods.0

1. Introduction
Single-image super-resolution (SR) is a low-level vi-

sion task that entails the upsampling of a low-resolution
(LR) image to high resolution (HR). Despite the significant

*Corresponding Author: dsrl2@cam.ac.uk
0Code is available at https://github.com/royson/metakernelgan

Figure 1. Landscape of kernel estimation methods for blind SR.
Supervised methods are computationally efficient, but underper-
form when faced with out-of-distribution kernels on real-world
images. Unsupervised methods can better adapt to diverse ker-
nels, but are undeployable due to their excessive computational
overhead. Our MetaKernelGAN method blends together both ap-
proaches for the first time and introduces the essential techniques
to obtain the respective benefits.

progress of deep learning-based SR in recent years, the ma-
jority of existing approaches [1, 7, 8, 18, 19, 20, 30, 33]
assume a fixed degradation process with a known blur ker-
nel, such as bicubic interpolation. This fact often leads to
poor performance in real-world cases, due to the variability
of the degradation process across images, and puts a strong
retraining requirement for every new degradation operation.

In this context, an alternative line of SR methods has
emerged that aims to improve the performance under un-
known degradations. These methods can be taxonomized
into non-blind and blind. Non-blind SR leverages a pro-
vided degradation process in order to maximize the upsam-
pling quality for the given image. Blind SR, on the other
hand, estimates the degradation process.

Estimating the degradation process can be done either
implicitly or explicitly. Implicit methods typically adopt a
supervised learning approach where the degradation rep-
resentation is learnt jointly with an SR model on a given
dataset [12, 24, 36] (Fig. 1 - left). In such schemes, the
features of the degradation process of the given training set
are implicitly built into the SR model, yielding high perfor-
mance on test images with the same degradation. From a
computational aspect, as no adaptation is performed at in-

1

ference time, these methods only require a forward pass and
hence are fast. Nonetheless, the main limitation of these
methods is that their performance deteriorates significantly
when the test degradation differs from the train distribution.
This property makes them unsuitable for the variably de-
graded images in the wild and renders their applicability
narrow to settings with well-known degradation processes.

In contrast, explicit degradation estimation methods [5,
22] learn a degradation process1 for each given image at
inference time. These methods either jointly optimize the
super-resolved image together with the kernel or feed both
the kernel and the given image to a downstream non-blind
SR model in a two-step process. The degradation estimation
is performed through unsupervised learning and requires a
number of training iterations to effectively learn the image-
specific degradation process (Fig. 1 - right). By adapting
on each image, these methods not only lead to better per-
formance on unseen degradation distributions, but also pro-
vide a better interpretation of the kernel in the pixel space
through their explicit degradation modeling. Nonetheless,
the additional computations per image and their unsuper-
vised nature make these methods slow and unstable, of-
ten requiring thousands of training steps for each image to
achieve adequate performance.

To counteract the limitations of these unsupervised
methods, existing approaches constrain the set of possible
kernels solutions by either pretraining the model to start
with an initial Gaussian-like kernel [22], jointly optimiz-
ing both the image and kernel by minimizing the LR image
reconstruction loss [11], explicitly optimizing the precision
matrix of the Gaussian kernel [38], or heavily enforcing the
use of regularization, such as encouraging the kernel to be a
bicubic kernel at the start [5]. Although effective, the afore-
mentioned limitations are not sufficiently mitigated, espe-
cially in cases where the given image does not contain suf-
ficient information, e.g. noisy and/or tiny images.

In this work, we aim to tackle the same set of challenges
of unsupervised kernel estimation through supervised learn-
ing while retaining the benefits of unsupervised learning.
In other words, our method should only utilize the inter-
nal information of the given image during inference to bet-
ter handle unseen degradations but fall back on a learned
kernel that works well on average across a dataset of im-
ages in cases where this internal information is limited (see
Fig. 1 - center). To this end, we propose MetaKernelGAN,
a gradient-based meta-learning approach that learns from
the unsupervised kernel estimation learner. Concretely, we
build upon KernelGAN [5] as our unsupervised learner and
aim to meta-learn the initialization of both the generator and
discriminator so that it can rapidly and accurately estimate
the kernel for each image. Through extensive experiments,
we demonstrate the benefits, limitations, and suitability of

1Generally the blur kernel is assumed to be anisotropic Gaussian.

our approach, compared with existing kernel estimation and
blind SR approaches on both standard datasets and real-
world images. We also provide a detailed analysis of the
kernel estimation process, highlighting the advantages and
limitations of meta-learning in explicit kernel estimation.
Most importantly, we show that this blending of supervised
and unsupervised learning holds considerable potential in
utilizing external images for unsupervised degradation esti-
mation works, directly counteracting the fundamental limi-
tations of these per-image methods.

2. Related Work
Explicit Kernel Estimation. Recent kernel estimation ap-
proaches have been dominated by the use of deep learning.
KernelGAN [5] exploits the internal patch recurrence of the
image and derives a kernel that preserves the distribution of
the image across scales. Double-DIP [11, 29] jointly opti-
mizes the HR image and the blur kernel by minimizing the
LR image reconstruction loss. These explicit kernel estima-
tion works learn the kernel in the pixel space using neural
networks, starting from a random initialization for each im-
age. Hence, they often require multiple regularization terms
to restrict the possible set of solutions, resulting in unstable
and slow convergence. To counteract this, FKP [22] con-
strains the kernel space to an anisotropic Gaussian distribu-
tion by mapping a simpler latent distribution to a Gaussian
distribution through normalizing flows, which is pretrained
in a supervised manner. Optimizing directly on this latent
space traverses a learned kernel manifold that improves ac-
curacy when applied to existing kernel estimation methods,
such as KernelGAN and Double-DIP. Lastly, BSRDM [38]
explicitly learns the precision matrix of the Gaussian kernel
and models the noise variance. Instead of learning a re-
stricted space of Gaussian kernel solutions, our approach
meta-learns “how to adapt” across multiple unsupervised
adaptation steps using a diverse distribution of images.
Meta-Learning. Meta-learning methods aim to extract
transferable knowledge from a distribution of tasks so as to
solve new tasks more data efficiently. This area is now too
wide to review exhaustively here, and we refer the reader
to the survey [13]. Gradient-based meta-learners such as
MAML [10] are a popular approach that aim to learn a neu-
ral network initialization that can be well adapted with a
small amount of data and few gradient steps. In the con-
text of zero-shot super-resolution (ZSSR [31]), a few stud-
ies such as MZSR [32] and MLSR [28] have applied such
meta-learning to learn initializations of SR networks that
can be rapidly adapted, accelerating inference compared to
prior ZSSR. However, these works are non-blind; they as-
sume the degradation process is known and hence comple-
mentary to our work. With respect to GANs, a few stud-
ies [6, 23] have tried with limited success to meta-learn
GAN initalizations for data-efficient adaptation of genera-

2

Meta-Train Stage - Supervised Inference Stage - Unsupervised

𝜃{𝐺,𝐷}

𝜃{𝐺,𝐷}
1

𝜃{𝐺,𝐷}
2

𝜃{𝐺,𝐷}
3

෠𝜃{𝐺,𝐷}

Adaptation to task 𝑖
Meta-learning

Init

LR

𝐺 LRS

𝐷

෠𝜃𝐺

෠𝜃𝐷

Forward pass
Backward pass

Step 1: Adaptation

Step 2: Kernel Derivation

𝐺 ෠𝑘

LR

LRS

Eq. (2)

Figure 2. Overview of MetaKernelGAN.

tive models to new categories or domains. In this study, we
focus on kernel estimation for blind SR, and for the first
time use meta-learning to both accelerate and improve the
accuracy of kernel estimation, and hence downstream non-
blind super-resolution. Uniquely, we meta-learn the initial-
ization of a kernel-generating GAN from an external distri-
bution of images, so that it can be easily adapted to each
testing image with the limited information available from
its internal patch recurrence.

3. Meta-Learning for Kernel Estimation
Preliminaries. The degradation process of image super-
resolution is commonly expressed as:

ILR =
(
IHR ∗ k

)
↓s + n (1)

where ILR and IHR are the LR and HR image respectively,
k is the blur kernel, ↓s is the subsampling operation with
scaling factor s, and n is the additive noise. Blind SR aims
to estimate both the blur kernel and HR image and the ob-
jective is formulated as follows:

ÎHR, k̂ = argmin
IHR,k

||
(
IHR ∗k

)
↓s −ILR||p+ϕ(IHR)+Φ(k) (2)

where ||
(
IHR ∗ k

)
↓s −ILR||p is the fidelity term, ϕ(IHR)

is the image prior, and Φ(k) is the kernel prior. Image
priors have been well-investigated and are often implicitly
represented through convolutional neural networks (CNNs)
as they 1) constitute structurally strong natural image pri-
ors [35] and 2) are highly effective at learning priors from
a large set of LR-HR pairs [7]. In contrast, kernel pri-
ors have only been recently studied through the use of
fully-connected layers [29], a deep linear convolutional net-
work [5], or normalizing flows [22], all of which solely rely
on the internal information within a given image. In this
work, we focus on estimating the kernel and use an existing
non-blind SR work for upsampling.
KernelGAN for Internal Learning. A prominent approach
to estimate the kernel from an LR image is by exploiting
its internal patch recurrence. Specifically, KernelGAN [5]
achieves this by employing a deep linear generator as a prior

Algorithm 1: Meta-Training of MetaKernelGAN
Input: Distribution over tasks p(T)

Number of steps Nsteps, Nadapt, Nval
Step size hyperparameters αG, αD, βG, βD

Loss weighting hyperparameters ω, η, ζ

Output: Meta-learned θ̂G and θ̂D
1 Initialize θG and θD
2 for j in [1, Nsteps] do ▷ Meta-optimization steps
3 θi

G ← θG, θi
D ← θD

4 Sample a batch of tasks T i =
〈
ILR,i, k

〉
∼ p(T)

5 Interval loss dictionary b← {·}
6 forall T i do
7 b[T i][G]← [·], b[T i][D]← [·]
8 for l in [1, Nadapt] do ▷ Adaptation steps over task i
9 Compute adapted parameters (Eq. (5)):

θi
G ← θi

G − αG∇θG
Ltask

G (θi
D, θi

G)

θi
D ← θi

D − αD∇θD
Ltask

D (θi
D, θi

G)

10 if (l mod Nval) = 0 then ▷ Interval loss evaluation
11 b[T i][G].append

(
Lmeta

G (θi
D, θi

G, k)
)

12 b[T i][D].append
(
Lmeta

D (θi
D, θi

G)
)

13 end
14 end
15 end
16 w ← GetIntervalLossWeights(j)
17 Update θG and θD :

θG ← θG − βG∇θG

∑
T i∼p(T)

(
b[T i][G]⊙w

)
θD ← θD − βD∇θD

∑
T i∼p(T)

(
b[T i][D]⊙w

)
18 end
19 θ̂G ← θG, θ̂D ← θD

to learn the linear degradation process (Eq. (1)). First, the
generator, G, takes in a patch from the given LR image
and downsamples it to obtain the resulting LR son (LRS)
patch. Random patches are sampled from the LR image,
i.e. pLR∼patches(ILR), and the corresponding LRS patches
are generated by the generator G, i.e. G(pLR; θG). These
are then fed into the discriminator, D, which distinguishes
between the two patch distributions. After training, the es-
timated kernel is derived from the generator as follows:

k̂ = DK(θG) = Ĝ(J⌈m
2
⌉⌈m

2
⌉; θG) (3)

where k̂∈[0, 1]m×m is the estimated kernel, Ĝ
is G with its convolutional strides set to 1, and
J⌈m

2
⌉⌈m

2
⌉∈{0, 1}(2m−1)×(2m−1) is a single-entry matrix

with all zeros except for a value of 1 at its central element.
As KernelGAN directly estimates the kernel in the pixel

space, it employs multiple regularization terms to restrict
the number of possible solutions to a Gaussian-like ker-
nel such as being similar to the bicubic kernel at the start,
incentivizing the optimal estimated kernel, k∗, to sum to
one, discouraging boundary pixels, and encouraging spar-
sity and centrality. The need to retrain both the generator
and discriminator from scratch and tune the hyperparame-
ters of these regularization terms per image constitutes two
of the main limitations of KernelGAN, resulting in unstable
results and excessively long inference times.

3.1. MetaKernelGAN

Our proposed approach, MetaKernelGAN, aims to coun-
teract the drawbacks of KernelGAN to effectively improve

3

Method Steps Set14 B100 Urban100 DIV2K

×2
Bicubic - 24.82/0.6910/-/- 25.17/0.6603/-/- 22.31/0.6471/-/- 26.94/0.7642/-/-
KernelGAN [5] + USRNet 3000 25.11/0.7404/43.37/3.22 24.81/0.7081/43.95/3.00 23.16/0.7259/44.31/3.10 27.56/0.8157/44.72/2.82
KernelGAN-FKP [22] + USRNet 1000 22.11/0.6229/45.25/9.70 23.48/0.6628/44.41/6.61 22.67/0.7099/44.93/4.77 28.83/0.8583/47.94/3.09
DSKernelGAN (our baseline) + USRNet 200 28.34/0.8210/42.17/4.15 28.06/0.7928/41.26/4.64 25.99/0.8046/42.84/3.74 31.07/0.8732/43.54/3.53
MetaKernelGAN (ours) + USRNet 200 28.71/0.8331/46.23/2.44 28.95/0.8222/45.94/2.38 26.78/0.8355/47.37/2.16 31.67/0.8944/48.00/2.08
GT + USRNet (upper bound) - 32.56/0.8944/-/- 31.33/0.8771/-/- 29.96/0.8954/-/- 34.59/0.9268/-/-

×2 with Non-Gaussian Kernel
Bicubic - 24.80/0.6907/-/- 25.17/0.6609/-/- 22.31/0.6476/-/- 26.93/0.7640/-/-
KernelGAN [5] + USRNet 3000 24.29/0.7088/41.75/3.16 23.84/0.6780/42.50/2.94 22.12/0.6940/42.86/2.96 26.52/0.7937/43.13/2.83
KernelGAN-FKP [22] + USRNet 1000 20.91/0.6034/42.35/13.08 22.75/0.6447/42.54/6.31 21.54/0.6742/42.85/4.77 27.40/0.8339/44.75/3.08
DSKernelGAN (our baseline) + USRNet 200 28.00/0.8067/40.87/4.03 27.74/0.7805/39.9/4.83 25.51/0.7906/41.48/3.68 30.74/0.8672/42.0/3.56
MetaKernelGAN (ours) + USRNet 200 28.05/0.8153/43.68/2.36 28.2/0.8031/43.69/2.32 25.84/0.8122/44.72/2.12 30.96/0.8830/44.96/2.08
GT + USRNet (upper bound) - 32.47/0.8968/-/- 31.34/0.8803/-/- 30.08/0.8999/-/- 34.59/0.9272/-/-

×2 with Image Noise of Level 10 (3.92%)
Bicubic - 24.69/0.6639/-/- 24.98/0.6321/-/- 22.20/0.6162/-/- 26.65/0.7273/-/-
KernelGAN [5] + USRNet 3000 27.29/0.7671/43.15/3.29 27.10/0.7353/43.69/3.22 25.08/0.7679/44.34/3.10 29.50/0.8286/44.66/2.91
KernelGAN-FKP [22] + USRNet 1000 23.23/0.7090/44.46/13.40 24.87/0.7188/43.72/7.89 23.80/0.7437/44.26/5.04 28.57/0.8277/47.10/3.68
DSKernelGAN (our baseline) + USRNet 200 27.57/0.7619/41.27/4.57 27.10/0.7143/39.44/5.55 25.15/0.7507/41.03/4.55 29.74/0.8154/41.81/4.28
MetaKernelGAN (ours) + USRNet 200 28.23/0.7773/43.99/2.76 27.75/0.7354/43.07/2.98 25.86/0.7780/44.8/2.6 30.25/0.8311/44.91/2.64
GT + USRNet (upper bound) - 29.57/0.7990/-/- 28.56/0.7607/-/- 27.17/0.8114/-/- 31.27/0.8497/-/-

×4
Bicubic - 21.15/0.5280/-/- 22.09/0.5119/-/- 19.30/0.4761/-/- 23.20/0.6329/-/-
KernelGAN [5] + USRNet 3000 Not supported Not supported 19.62/0.5183/57.05/13.53 23.51/0.6480/57.27/12.30
KernelGAN-FKP [22] + USRNet 4000 Not supported Not supported Not supported 25.34/0.7221/60.45/11.81
DSKernelGAN (our baseline) + USRNet 200 24.61/0.6725/58.77/12.97 24.30/0.6127/56.91/18.14 21.99/0.6134/57.34/14.89 26.93/0.7448/58.74/14.10
MetaKernelGAN (ours) + USRNet 200 25.46/0.6960/63.13/6.54 24.36/0.6200/59.84/10.84 22.21/0.6375/61.74/9.01 26.99/0.7600/61.78/8.34
GT + USRNet (upper bound) - 27.89/0.7498/-/- 26.92/0.6986/-/- 24.95/0.7357/-/- 29.46/0.8069/-/-

Table 1. Average Image PSNR/Image SSIM/Kernel PSNR/LK-COV

of patch recurrence methods on SR benchmarks across five runs.

its utility and enable fast and stable kernel estimation.
Specifically, we adopt a variant of KernelGAN and meta-
train the parameters of both G and D using a set of diverse
images and kernels (Fig. 2). During inference, our approach
is fully unsupervised and is similar to KernelGAN. Unlike
KernelGAN, G is initialized with a meta-learned parameter
that can adapt rapidly to an accurate kernel and D is initial-
ized such that it can keep up to prevent the generator from
dominating. Hence, MetaKernelGAN does not rely on the
heavy use of regularization and require fewer hyperparame-
ters, resulting in a more stable adaptation process and need-
ing significantly fewer adaptation steps. A flow diagram of
Algo. 1 is provided in the Appendix.
Meta-Training. As presented in Alg. 1, the meta-training
process consists of two main loops: the outer loop over
meta-optimization steps (line 2) and the inner loop over
tasks (line 6) that constitutes the task adaptation stage.

At each outer loop iteration, a batch of new tasks is sam-
pled from the task distribution (line 4). Each task corre-
sponds to our modified KernelGAN process which consists
of an LR image and a kernel k, T i =

〈
ILR,i, k

〉
. More

details on the sampling process for T i can be found in the
Appendix. For each task in the batch, we update the task-
specific parameters (line 9), θiG and θiD, for Nadapt steps, us-
ing the following task adaptation loss, which comprises two
terms: the L1-norm variant of LSGAN loss [25] (Eq. (4))
and a sum-to-one term LSTO(k̂i) = |1 −∑

x,y k̂
i
x,y| where

k̂i is the estimated kernel for the i-th task.

LLSGAN
G (θD, θG) = EpLR∼patches(ILR) |D(G(pLR; θG); θD)− 1|

LLSGAN
D (θD, θG) = EpLR∼patches(ILR)

[
1

2
|D(pLR; θD)− 1|

+
1

2
|D(G(pLR; θG); θD)|

]
(4)

The LSTO term encourages the estimated kernel to sum to
one, resulting in a Gaussian-like kernel at every adaptation
step2. Finally, we compute the adapted parameters using the

2As the kernel is not the output but rather derived from θG (Eq. (3)),
the use of a softmax layer would not suffice.

Method Steps Set14 B100 Urban100 DIV2K

×2
Bicubic - 24.82/0.6910/-/- 25.17/0.6603/-/- 22.31/0.6471/-/- 26.94/0.7642/-/-
Double-DIP [11] + USRNet 1000 21.84/0.5984/41.34/5.96 18.52/0.4475/39.99/8.06 19.86/0.5827/37.95/5.93 24.33/0.7069/37.62/5.06
DIP-FKP [22] + USRNet 1000 28.90/0.8324/45.32/2.95 28.64/0.8224/46.67/2.95 26.00/0.8064/42.59/3.53 30.31/0.8722/43.19/3.30
BSRDM [38] + USRNet 440 29.38/0.8240/43.77/2.84 28.65/0.7936/40.76/3.21 26.20/0.8080/44.24/2.70 30.68/0.8695/46.00/2.57
MetaKernelGAN (ours) + USRNet 200 28.71/0.8331/46.23/2.44 28.95/0.8222/45.94/2.38 26.78/0.8355/47.37/2.16 31.67/0.8944/48.00/2.08
GT + USRNet (upper bound) - 32.56/0.8944/-/- 31.33/0.8771/-/- 29.96/0.8954/-/- 34.59/0.9268/-/-

×2 with Non-Gaussian Kernel
Bicubic - 24.80/0.6907/-/- 25.17/0.6609/-/- 22.31/0.6476/-/- 26.93/0.7640/-/-
Double-DIP [11] + USRNet 1000 21.48/0.5871/40.69/5.99 18.28/0.4367/39.34/8.16 19.66/0.5748/37.44/5.96 24.12/0.6995/37.14/5.10
DIP-FKP [22] + USRNet 1000 28.18/0.8153/43.30/2.96 27.88/0.8002/44.36/2.87 25.31/0.7888/41.23/3.50 29.99/0.8646/41.63/3.30
BSRDM [38] + USRNet 440 29.01/0.8155/41.24/2.85 28.41/0.7879/39.77/3.13 25.23/0.7875/42.47/2.70 29.90/0.8631/43.16/2.58
MetaKernelGAN (ours) + USRNet 200 28.05/0.8153/43.68/2.36 28.20/0.8031/43.69/2.32 25.84/0.8122/44.72/2.12 30.96/0.8830/44.96/2.08
GT + USRNet (upper bound) - 32.47/0.8968/-/- 31.34/0.8803/-/- 30.08/0.8999/-/- 34.59/0.9272/-/-

×2 with Image Noise of Level 10 (3.92%)
Bicubic - 24.69/0.6639/-/- 24.98/0.6321/-/- 22.20/0.6162/-/- 26.65/0.7273/-/-
Double-DIP [11] + USRNet 1000 24.32/0.7023/41.29/5.97 21.96/0.6010/39.91/8.25 20.53/0.6174/37.66/5.73 25.46/0.7547/37.43/5.03
DIP-FKP [22] + USRNet 1000 28.36/0.7772/44.70/2.95 27.64/0.7401/45.22/3.11 25.47/0.7654/42.49/3.58 29.49/0.8259/43.10/3.31
BSRDM [38] + USRNet 440 28.37/0.7716/43.23/3.06 27.62/0.7308/41.15/3.18 25.85/0.7723/45.13/2.59 30.28/0.8325/46.47/2.25
MetaKernelGAN (ours) + USRNet 200 28.23/0.7773/43.99/2.76 27.75/0.7354/43.07/2.98 25.86/0.7780/44.80/2.60 30.25/0.8311/44.91/2.64
GT + USRNet (upper bound) - 29.57/0.7990/-/- 28.56/0.7607/-/- 27.17/0.8114/-/- 31.27/0.8497/-/-

×4
Bicubic - 21.15/0.5280/-/- 22.09/0.5119/-/- 19.30/0.4761/-/- 23.20/0.6329/-/-
Double-DIP [11] + USRNet 1000 20.48/0.5099/53.13/16.65 18.77/0.4028/52.26/22.92 17.86/0.4375/50.20/18.05 21.48/0.5704/46.33/15.30
DIP-FKP [22] + USRNet 1000 24.98/0.6707/54.17/16.28 24.57/0.6167/53.46/19.10 21.65/0.5947/48.57/23.39 25.18/0.7177/46.03/26.76
BSRDM [38] + USRNet 440 24.64/0.6415/48.09/17.10 24.55/0.5898/46.44/21.45 21.94/0.5868/49.47/18.66 26.72/0.7243/51.45/16.35
MetaKernelGAN (ours) + USRNet 200 25.46/0.6960/63.13/6.54 24.36/0.6200/59.84/10.84 22.21/0.6375/61.74/9.01 26.99/0.7600/61.78/8.34
GT + USRNet (upper bound) - 27.89/0.7498/-/- 26.92/0.6986/-/- 24.95/0.7357/-/- 29.46/0.8069/-/-

Table 2. Average Image PSNR/Image SSIM/Kernel PSNR/LK-COV

of MetaKernelGAN and existing joint learning methods on stan-
dard benchmarks across five runs.

following objective functions on task T i:

Ltask
G (θiD, θiG) = LLSGAN

G (θiD, θiG) + ζLSTO(DK(θiG))

Ltask
D (θiD, θiG) = LLSGAN

D (θiD, θiG) (5)

where ζ is a hyperparameter and DK(·) is the kernel de-
coder from Eq. (3).

In regular intervals during the task adaptation stage, we
compute the meta-objective by introducing an additional
loss term: LK-PIX(k, k̂)=

∑
x,y |k̂x,y − kx,y| that computes

the pixel-wise loss given the estimated task kernel k̂. Hence,
the covariance constraint is implicitly captured in this su-
pervised learning process. Overall, our meta-objectives are
defined as:

Lmeta
G (θiD, θiG, k) =

[
ωLK-PIX(k,DK(θiG))

+ ηLLSGAN
G (θiD, θiG)

+ ζLSTO(DK(θiG))
]

Lmeta
D (θiD, θiG) = LLSGAN

D (θiD, θiG) (6)

where ω, η and ζ are hyperparameters. Following
best practices from MAML++ [2], we compute the meta-
objective losses for both G and D every Nval inner-loop
steps and store in dictionary b (lines 10-12). Backpropa-
gating at not only the last but also the preceding steps has
been shown to alleviate gradient instability during the meta-
training phase.

After the completion of each task adaptation process, we
perform an update of the base parameters using a weighted
sum of the recorded meta-objectives3 (lines 16-17). This
process is repeated for Nsteps, until the final base parameters,
θ̂G and θ̂D, are available to be used for inference.
Inference. To adapt to a new image, we initialize G and
D with θ̂G and θ̂D and adapt these parameters using our
task adaptation loss as per Eq. (5). The estimated kernel is
derived from MetaKernelGAN’s generator as per Eq. (3).
Full algorithm is shown in Appendix Alg. 2.

3For the weight values, we follow the schedule presented by [32]. We
defer the details to the Appendix.

4

Method ×2 Peak Memory
Usage (GB)

×4 Peak Memory
Usage (GB)

×2 Latency
(Seconds)

×4 Latency
(Seconds)

KernelGAN 0.15 0.15 133.5 109.5
KernelGAN-FKP 0.23 0.23 113.9 441.6
Double-DIP 28.42 28.42 725.1 731.0
DIP-FKP 28.42 28.42 719.9 725.8
BSRDM 9.66 19.41 101.1 200.2
DSKernelGAN/MetaKernelGAN 0.15 0.15 7.1 7.4

Table 3. Inference cost to estimate the kernel from a LR image
corresponding to a 1356×2040 HR image.
4. Experiments

Models. For MetaKernelGAN, we employ a 6-layer deep
linear generator and adopt KernelGAN’s discriminator.
More details are provided in the Appendix.
Training Setup. We use the DIV2K [34] training set which
consists of images that are captured with diverse cameras.
We crop the sampled HR image into patches of 192 × 192
for each task. The cropped image is then randomly rotated
by 90◦ and/or flipped vertically and/or horizontally before
being downsampled for each task. We meta-learn both θG
and θD, leaving meta-learning θG only as an ablation study
in the Appendix.
Optimization Parameters. Our MetaKernelGAN is
trained for 100,000 meta-train steps, Nsteps=105. We use
SGD [16] and Adam [17] for the task- and meta-optimizer
respectively and adopt the first-order MAML [10] algo-
rithm due to the high memory cost of our GAN-based
training. We set Nadapt=25, and leave experimenting with
different Nadapt values in the Appendix. We set Nval=5,
evaluating the meta-objectives at every 5 steps, i.e. at steps
5, 10, 15, 20, 25. We set the discriminator’s input patch size
to 32 and use the following hyperparameters: αG=0.01,
αD=0.2, βG=1e−4, βD=1e−4, ω=1.0, η=1.0, and ζ=0.5.
Kernel Distribution. Following KernelGAN-FKP, we con-
sider an anistropic Gaussian distribution; each kernel is de-
termined based on a covariance matrix, Σ, which is param-
eterized by a random angle, Θ ∼ U [0, π], and two random
eigenvalues, λ1, λ2 ∼ U [0.35, 5.0]. Similarly to both Ker-
nelGAN and KernelGAN-FKP, we use the computed ×2
kernel to analytically derive the ×4 kernel of size 21× 21.
Evaluation Setup. We use the benchmark datasets pro-
vided by [22] for KernelGAN-FKP in all our experiments.
Specifically, we use Set14 [37], B100 [26], Urban100 [14],
and DIV2K validation set, in which each IHR image is
downsampled using a different randomly generated kernel,
k, to form ILR. The benchmark also consists of unseen
degradations, namely non-Gaussian kernels and noisy im-
ages derived by adding noise to k or ILR, respectively. Con-
cretely, uniform multiplicative noise of up to 40% of the
maximum kernel pixel value is added to each randomly gen-
erated Gaussian kernel, followed by normalization so that
each kernel sums to one. For noisy images, up to 3.92% of
the maximum pixel value is added to ILR at the end of the
degradation process. Lastly, we utilize USRNet-tiny [39]
as our downstream non-blind SR model and report the up-
per bound of attainable image performance by using the

ground-truth (GT) kernel.
Evaluation Metrics. We follow previous works and quan-
tify the accuracy of the estimated kernel with respect to
its ground truth using PSNR, which captures pixel magni-
tude. Unlike previous works, we also examine its covari-
ance by using the sum of absolute distances between the dis-
cretized covariance matrices, Σ̂, of the kernel estimate and
its ground truth: LK-COV =

∑N
x,y

∣∣Σ̂GT
x,y − Σ̂Est

x,y

∣∣, where Σ̂GT

and Σ̂Est are the covariance matrix of the GT kernel and the
estimated kernel respectively. As Σ̂ is a discrete represen-
tation of Σ, the amount of discretization error depends on
the kernel size. Details of how we derive Σ̂ can be found in
the Appendix. Discussions on the choice of this covariance
metric can be found in Section 5. For images, we compute
PSNR and SSIM on the Y-channel after shaving them by the
scale factor. We report the average score across five runs for
all quantitative results.

Figure 3. Kernel after 25, 50, 100, 200 adaptation steps for ×2
upsampling on 108005.png of B100. More examples in Appendix.

4.1. Comparison with Patch Recurrence Methods

In Table 1, we compare our work with other
KernelGAN-based approaches, which solely utilize the
patch recurrence of the given image during inference. We
ran each method per-image using the recommended num-
ber of steps in each prior work and report both the average
image and kernel performance.
Performance. For most natural images, the larger the im-
age, the stronger the patch recurrence [40], which can
be effectively utilized by KernelGAN and its variants.
Hence, as KernelGAN-FKP requires a larger patch size
than KernelGAN, KernelGAN-FKP’s performance deteri-
orates more for smaller spatial resolution benchmarks. As
a baseline, we pretrained KernelGAN in a supervised man-
ner, without meta-learning, optimizing both the generator
and discriminator using the meta-objective (Eq 6). We
named this approach DataSetKernelGAN (DSKernelGAN)
and trained it with the same hyperparameters as MetaKer-
nelGAN’s. Surprisingly, DSKernelGAN outperforms previ-
ous KernelGAN-based approaches by a large margin, even
on unseen distributions. This can be attributed to start-
ing with a reasonable kernel, i.e. the expected value of the
training set, as opposed to randomly initializing the kernel
in the parameter space (KernelGAN) or the flow-based la-
tent space (KernelGAN-FKP). Nevertheless, unlike MetaK-

5

Figure 4. Comparison of estimated kernel, along with its image
×2 upsampled using USRNet, on 0877.png DIV2K. Zoom in for
best results. See Appendix for more enlarged examples.
ernelGAN which directly learns from the adaptation pro-
cess, DSKernelGAN is more susceptible to adapt to faulty
kernels e.g. having non-zero values that are discontinuous
as shown in Fig. 3. For ×4 upsampling, the LR images are
tiny and severely limited in internal information. Hence,
KernelGAN and KernelGAN-FKP fail when the given im-
age is below the required minimum spatial resolution due
to the need for further downsampling. Conversely, DSKer-
nelGAN & MetaKernelGAN supports any spatial resolu-
tion by padding the images to the minimum size. In this
limited setting, the performance gap between DSKernel-
GAN & MetaKernelGAN is closer together as both methods
start from an informed model initialization and adapt to an
isotropic Gaussian-like kernel that performs well on aver-
age across multiple tasks. An analysis of the fallback on the
initial kernel in tiny images can be found in the Appendix.
Benchmark and real-world qualitative results can be found
in Fig. 4 and 6 with more examples in the Appendix.
Inference Cost. Table 3 shows the peak memory usage
and latency cost for explicit kernel estimation methods dur-
ing inference. The cost of KernelGAN-based approaches
is invariant to the image resolution as it utilizes a fixed-
size patch for learning. Due to MetaKernelGAN’s kernel
adaptation stability, the recommended number of steps is
fixed at 200, resulting in a speedup of up to 18.8× for ×2
upsampling and 59.6× for ×4 upsampling over previous
KernelGAN-based methods.

4.2. Comparison with Joint Learning Methods

We further compare with DIP-based approaches,
which jointly optimize both the image and kernel, and
BSRDM [38], which optimizes for the image noise in ad-
dition to the image and kernel (Table 2). In comparison
with patch recurrence methods, these joint learning meth-
ods use full-blown models and are significantly more costly
in both compute and memory. For a fair comparison with
our work, we extract the kernel after optimization and feed
it into USRNet for upsampling. Due to GPU memory con-
straints, for DIP-based approaches and BSRDM, we crop
600×600 center image patches to extract k̂ for DIV2K.
Performance. As joint optimization is a more challenging
task than patch recurrence approaches, the naive approach,
Double-DIP, although effective for image deblurring [29],

Method Set14 B100 Urban100 DIV2K

×2
IKC [12] 27.34/0.8050 27.14/0.7712 24.64/0.7761 29.33/0.8562
DAN [24] 27.06/0.7787 26.98/0.7481 24.39/0.7554 29.54/0.8490
DASR [36] 27.34/0.7977 27.31/0.7694 24.73/0.7811 29.74/0.8611
MetaKernelGAN (ours) + USRNet 28.71/0.8331 28.95/0.8222 26.78/0.8355 31.67/0.8944

×2 with Non-Gaussian Kernel
IKC [12] 27.02/0.7765 26.82/0.7383 24.0/0.7325 28.99/0.8357
DAN [24] 26.66/0.7585 26.66/0.7277 23.84/0.7208 28.90/0.8210
DASR [36] 26.8/0.7660 26.77/0.7344 23.97/0.7297 29.07/0.8286
MetaKernelGAN (ours) + USRNet 28.05/0.8153 28.2/0.8031 25.84/0.8122 30.96/0.8830

×2 with Image Noise of Level 10 (3.92%)
IKC [12] 26.02/0.6895 25.96/0.6524 23.23/0.6364 27.65/0.7231
DAN [24] 26.02/0.6828 25.95/0.6500 23.28/0.6363 27.71/0.7222
DASR [36] 26.07/0.6843 25.98/0.6506 23.32/0.6375 27.75/0.7223
MetaKernelGAN (ours) + USRNet 28.23/0.7773 27.75/0.7354 25.86/0.7780 30.25/0.8311

×4
IKC [12] 24.51/0.6640 24.22/0.6054 21.67/0.5952 25.83/0.7235
DAN [24] 24.6/0.6534 24.39/0.5917 21.69/0.5877 26.36/0.7247
DASR [36] 25.24/0.6719 24.86/0.6147 22.13/0.6118 26.8/0.7404
MetaKernelGAN (ours) + USRNet 25.46/0.6960 24.36/0.6200 22.21/0.6375 26.99/0.7600

Table 4. Comparing Image PSNR/SSIM with implicit degradation blind
SR methods on standard benchmarks.

often fails to find adequate solutions. By restricting the pos-
sible set of kernel solutions, DIP-FKP outperforms previous
KernelGAN-based approaches by a huge margin. BSRDM
took a step further by learning the precision matrix of a
Gaussian kernel, hence ensuring that the learned kernel is
strictly Gaussian. Additionally, they also explicitly modeled
the noise, achieving state-of-the-art for kernel estimation
on most benchmarks among joint learning methods. These
joint learning methods are known to perform significantly
better than patch recurrence methods at a cost of heavy com-
pute and memory. Despite being orders-of-magnitude more
efficient, our approach helps to bridge this performance
gap between joint learning methods and patch recurrence
methods, having similar performance or even outperform-
ing them on several benchmarks. Notably, our method is
able to achieve similar performance with BSRDM without
explicitly modeling the noise. Nonetheless, our approach
is still limited in cases where images have weak patch re-
currence, namely Set14 and B100. This result highlights
the potential of better utilizing external images to improve
existing unsupervised blind SR methods.
Inference Cost. We use a 1356×2040 HR image to esti-
mate the kernel from its LR image, cropped to a maximum
size of 600×600, given the recommended number of steps.
MetaKernelGAN achieves a speedup of up to 102.1× and
98.7× for ×2 and ×4 upsampling over DIP-based methods,
respectively (Table 3). Additionally, DIP-based approaches
have a peak memory usage of 28.4GB, two orders of mag-
nitude higher than KernelGAN-based approaches. BSRDM
uses a smaller variant of the model used in DIP-based ap-
proaches and requires fewer optimization steps. Nonethe-
less, it is still 14.24× and 27.05× slower and has a peak
memory usage of 64.4× and 129.4× more than MetaKer-
nelGAN for ×2 and ×4 upsampling, respectively.

4.3. Comparison with Implicit Estimation

Although our work focuses on explicit kernel estima-
tion, we compare it with several implicit approaches to

6

Method
Comparisons

Kernel
Metrics Set14 B100 Urban100 DIV2K

×2
MetaKernelGAN PSNR 0.7157/0.7450 0.5558/0.5798 0.5161/0.5854 0.5189/0.5805
& KernelGAN-FKP LK-COV 0.7543/0.8373 0.3798/0.6451 0.5035/0.6247 0.5512/0.4508
MetaKernelGAN PSNR 0.6047/0.8021 0.5497/0.6914 0.7554/0.7780 0.4750/0.6718
& DIP-FKP LK-COV 0.5082/0.7362 0.4786/0.5734 0.4556/0.4709 0.4181/0.5365
MetaKernelGAN PSNR 0.5137/0.6967 0.7092/0.8014 0.7349/0.7919 0.5292/0.7935
& BSRDM LK-COV 0.5991/0.6132 0.5463/0.6486 0.4792/0.4375 0.6953/0.7483

×4
MetaKernelGAN PSNR - - - 0.5511/0.6820
& KernelGAN-FKP LK-COV - - - 0.6459/0.6975
MetaKernelGAN PSNR 0.5496/0.6219 0.4537/0.6082 0.6984/0.6914 0.6506/0.7227
& DIP-FKP LK-COV 0.3643/0.5252 0.4428/0.5210 0.5950/0.5808 0.5264/0.6077
MetaKernelGAN PSNR 0.4342/0.3363 0.5171/0.6208 0.6933/0.7420 0.6499/0.7895
& BSRDM LK-COV 0.2180/0.1604 0.5418/0.5508 0.6344/0.5832 0.5828/0.7059

Table 5. Pearson-r/Spearman-ρ correlation between the kernel metrics
and Image PSNR on the outputs of MetaKernelGAN and previous state-
of-the-art kernel estimation methods.

underline their benefits and limitations. These blind SR
methods avoid explicitly estimating the kernel and, instead,
learn a degradation representation optimized directly in the
image space in a supervised manner. We compare with
three prominent works, namely IKC [12], DAN [24], and
DASR [36], by evaluating the recommended pre-trained
model provided by the authors.

The image performance of these implicit degradation es-
timation approaches is stellar, in some cases reaching a sim-
ilar performance as with the use of the ground-truth kernel.
However, as they do not adapt to the given image during in-
ference, their performance drops when the test distribution
differs from the training distribution, e.g. [24] retrains DAN
for different distributions. As a result, the performance of
these methods is lagging (Table 4), especially in our un-
seen test distributions, namely non-Gaussian kernels and
noisy images, where they perform similarly to one another.
Specifically, IKC and DASR ×2 were trained on isotropic
kernels and DAN was trained on a narrower kernel distri-
bution. The closest matching distribution to our evaluation
set is DASR ×4, which was trained on anistropic kernels
with similar widths (λ1, λ2 ∼ U [0.2, 4.0]), resulting in a
closer performance gap. Hence, implicit degradation meth-
ods are ideal for known degradation distributions, as they
do not require training during inference. Nevertheless, this
assumption often does not hold for real-world images in the
wild. In terms of memory, IKC, DAN, and DASR have
5.2M, 4.33M, and 5.8M parameters as opposed to MetaK-
ernelGAN’s 0.116M.

4.4. Kernel Analysis

Correlation between Kernel and Image Fidelity. In previ-
ous explicit degradation estimation works, kernels are eval-
uated quantitatively using the PSNR metric. In our exper-
iments, we observe that a higher kernel PSNR does not
necessarily imply a higher image fidelity. For instance,
KernelGAN-FKP achieves superior kernel PSNR for ×2
upsampling on DIV2K, but is lacking in image PSNR. To
elucidate this phenomenon, we measure the correlation be-
tween the gain in i) image PSNR and kernel PSNR, and

ii) image PSNR and LK-COV between MetaKernelGAN and
previous methods and show them in Table 5. The cor-
responding Pearson-r and Spearman-ρ correlation coeffi-
cients indicate that both the pixel magnitude and the co-
variance of the estimated kernel are important to evaluate
the kernel mismatch for image SR. As such, the approach
of previous kernel estimation works [5, 22, 29] that solely
evaluates the kernel PSNR to indicate the downstream SR
performance does not suffice.

To illustrate the cases where the kernel PSNR is lower
but the image PSNR is higher, Fig. 4 shows a super-resolved
image together with the estimated kernel. As MetaKer-
nelGAN is learnt using the GT kernels, it puts greater
emphasis on pixels closer to the center, thus underesti-
mating kernels that are slightly sharper than the GT and
leading to images that may be slightly blurry. In con-
trast, although KernelGAN-FKP’s kernels look closer to the
ground truth, it tends to significantly overestimate kernels,
yielding smoother kernels and hence overly sharp images
and unpleasant artifacts. Although both under- and over-
estimation of kernels are detrimental to the downstream im-
age quality [9], we argue that undesirable artifacts are less
perceptually appealing to the human eye than a slight blur.
Joint learning methods, on the other hand, estimate kernels
whose covariance is closer to that of the ground truth than
KernelGAN-FKP’s. However, its performance on kernel
pixel magnitude is still lagging (Table 2). Moreover, we ob-
serve that for some images, DIP-FKP and KernelGAN-FKP
produce kernels that have ill-conditioned Gaussian covari-
ance matrices, aggravating kernel mismatch and image SR.

0 500 1000
Steps

35

40

45

50

55

60

K
er

ne
l

P
S

N
R

0 500 1000
Steps

0

10

20

30

40

50

LK
−
C
O
V

0 500 1000
Steps

10

15

20

25

30

Im
ag

e
P

S
N

R

KernelGAN

KernelGAN-FKP

DoubleDIP

DIP-FKP

BSRDM

MetaKernelGAN

Figure 5. Intermediate kernel results and the corresponding down-
stream image results generated by USRNet for every adaptation
iteration (×2 upsampling for 0839.png in DIV2K).

Adaptation Stability. Fig. 5 depicts the convergence be-
havior of MetaKernelGAN compared to the kernel estima-
tion baselines across adaptation steps. As DIP-FKP and
KernelGAN-FKP optimize directly on the learned kernel
manifold, they start off with a Gaussian-like kernel, whereas
MetaKernelGAN fast adapts to one within the first 25 steps.
Furthermore, although KernelGAN-FKP has a more stable
convergence than KernelGAN, both methods’ performance
can vary drastically depending on the number of update it-
erations and the given image. Similarly, despite explicitly
optimizing for a Gaussian kernel, BSRDM’s performance
varies across update iterations. In contrast, MetaKernel-

7

GAN’s learned adaptation process results in subtle changes
in performance and smoother convergence across iterations.
This results in a more stable image fidelity result across it-
erations when the kernels are used by the downstream SR
model, underlining the benefits of utilizing external images
for the internal learning of a single image.

Figure 6. Real-world visual quality comparison on ×4 upsam-
pling. Zoom in for best results. More examples in Appendix.

5. Discussion
MetaKernelGAN’s Use Cases. Although MetaKernel-
GAN’s task is kernel estimation, it can be deployed in con-
junction with an SR model to perform image SR with im-
proved efficiency and quality. To perform SR, MetaKernel-
GAN first estimates the kernel of the LR image and then
passes it downstream to a non-blind SR model (USRNet in
our paper) to produce the HR image.
Efficiency Benefits. In real-world use-cases, SR models are
deployed in two main scenarios: i) on a remote server as-a-
service, or ii) on a user device, such as a TV or smartphone.
In both cases, reducing the energy consumption is of critical
importance: on the server side, energy bills contribute the
most to the monetary cost, while on the device side, exces-
sive energy consumption affects the battery life. Further-
more, minimizing the carbon footprint is a vital necessity.

The amount of inference-time computation directly de-
termines the energy consumption. As such, with MetaKer-
nelGAN providing significantly faster inference than all ex-
isting methods (Table 3), we substantially reduce resource
usage, latency and energy, while still delivering accurate
kernels. As such, MetaKernelGAN constitutes an enabling
component for energy-efficient and high-quality SR.
Limitations & Further Directions. Despite our substantial
gains, we are still faced with a few remaining challenges.
Kernel Evaluation. We showed that by considering both
our proposed LK-COV and the status-quo metric (PSNR) of
evaluating kernels, we can better reason about the perfor-
mance of the downstream SR task. Nonetheless, these ker-
nel metrics are less effective as the estimated kernel dif-
fers more from being Gaussian-like. As covariance ma-
trices lie on a Riemannian manifold and not in Euclidean
space, measuring the geodesic distance instead of the Eu-
clidean distance between two covariance matrices would
be a better option [4]. However, as the learned kernel
estimates do not strictly follow the underlying assumed
Gaussian distributions, apart from kernels estimated by

BSRDM, their covariance matrices might not be positive
semi-definite, as often seen in the kernel estimates of DIP-
FKP and KernelGAN-FKP. Similarly, although there are
theoretical works that show how the kernel affects the SR
result [9], these cannot be effectively applied to evaluate ill-
conditioned covariance matrices, leading to our adoption of
LK-COV as an approximation.

On the other hand, it is arguable whether the estimated
kernels need to be strictly Gaussian in real-world scenarios.
For example, unlike BSRDM, MetaKernelGAN does not
explicitly optimize for image noise or restrict the kernel to
be Gaussian (Eq. (5)) while achieving similar performance
to BSRDM in the image noise experiments. Moreover, as
the degradation process of SR is linear (Eq. (1)), the deep
linear generator used in MetaKernelGAN can be learnt to
represent both the kernel and the noise.
Weak Patch Recurrence. Another challenge resides in the
method we adopted for internal learning; KernelGAN per-
forms poorly on images with weak patch recurrence. Al-
though our approach significantly mitigates this over previ-
ous approaches by utilizing an isotropic Gaussian-like ker-
nel, there is still room for improvement in small images.
Optimal Adaptation Steps. Although MetaKernelGAN al-
leviates the kernel adaptation instability found in previous
kernel estimation methods, the optimal number of update it-
erations is still dependent on the given image at test time as
it is unsupervised during inference. Nonetheless, we empir-
ically observe that our method requires significantly fewer
adaptation steps compared to previous works.

6. Conclusion
Our work presents the first effective approach for inte-

grating the benefits of learning from a dataset of images in
a supervised manner and the unsupervised internal learn-
ing of a single image for kernel estimation. By learning
the unsupervised adaptation process across diverse images,
MetaKernelGAN robustly estimates accurate kernels appli-
cable to high-fidelity downstream SR tasks, while being an
order-of-magnitude faster than previous kernel estimation
methods at no extra memory cost. Unifying both meta-
learning and kernel estimation comes at a cost of creating
new challenges not present in either of the original algo-
rithms. In contrast to MAML which targets a purely su-
pervised setting, our problem required blending supervised
and unsupervised learning and their disparate objectives, as
well as meta-learning both generator and discriminator. We
hope that future works would also take advantage of both
supervised and unsupervised methodologies such that ex-
ternal images can be used to effectively mitigate existing
limitations and better utilize unsupervised methods.

Acknowledgements
This work was supported by Samsung AI and the Euro-

pean Research Council via the REDIAL project.

8

References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

Accurate, and Lightweight Super-Resolution with Cascading
Residual Network. In European Conference on Computer
Vision (ECCV), 2018. 1

[2] Antreas Antoniou, Harrison Edwards, and Amos J. Storkey.
How to train your maml. In International Conference on
Learning Representations (ICLR), 2019. 4

[3] Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta,
Ian Bunner, and Konstantinos Saitas Zarkias. learn2learn: A
Library for Meta-Learning Research. Aug. 2020. 12

[4] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas
Ayache. Geometric means in a novel vector space structure
on symmetric positive-definite matrices. SIAM Journal on
Matrix Analysis and Applications, 29(1):328–347, 2007. 8

[5] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind
Super-Resolution Kernel Estimation using an Internal-GAN.
In Advances in Neural Information Processing Systems
(NeurIPS). 2019. 2, 3, 4, 7, 12

[6] Louis Clouatre and Marc Demers. FIGR: few-shot image
generation with reptile. CoRR, abs/1901.02199, 2019. 2

[7] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image Super-Resolution Using Deep Convolutional
Networks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2016. 1, 3

[8] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerat-
ing the Super-Resolution Convolutional Neural Network. In
European Conference on Computer Vision (ECCV), 2016. 1

[9] N. Efrat, Daniel Glasner, Alexander Apartsin, B. Nadler, and
A. Levin. Accurate Blur Models vs. Image Priors in Single
Image Super-resolution. IEEE International Conference on
Computer Vision (ICCV), 2013. 7, 8, 11

[10] Chelsea Finn, P. Abbeel, and S. Levine. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
Proceedings of the 36th International Conference on Ma-
chine Learning (ICML), 2017. 2, 5

[11] Yossi Gandelsman, Assaf Shocher, and Michal Irani.
“Double-DIP”: Unsupervised Image Decomposition via
Coupled Deep-Image-Priors. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 2,
4

[12] Jinjin Gu, Hannan Lu, W. Zuo, and C. Dong. Blind Super-
Resolution With Iterative Kernel Correction. IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 6, 7

[13] Timothy M Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos J. Storkey. Meta-Learning in Neural Networks:
A Survey. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2021. 2

[14] J. Huang, A. Singh, and N. Ahuja. Single Image Super-
Resolution from Transformed Self-Exemplars. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 5

[15] S. Ioffe and Christian Szegedy. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covari-
ate Shift. In International Conference on Machine Learning
(ICML), 2015. 11

[16] J. Kiefer and Jacob Wolfowitz. Stochastic Estimation of the
Maximum of a Regression Function. Annals of Mathemati-

cal Statistics, 23:462–466, 1952. 5
[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In International Conference on
Learning Representations (ICLR), 2015. 5

[18] Royson Lee, L. Dudziak, M. Abdelfattah, Stylianos I. Ve-
nieris, H. Kim, Hongkai Wen, and N. Lane. Journey towards
tiny perceptual super-resolution. In European Conference on
Computer Vision (ECCV), 2020. 1

[19] Royson Lee, Stylianos I. Venieris, L. Dudziak, S. Bhat-
tacharya, and N. Lane. MobiSR: Efficient On-Device Super-
Resolution through Heterogeneous Mobile Processors. In
The 25th Annual International Conference on Mobile Com-
puting and Networking (MobiCom), 2019. 1

[20] Royson Lee, Stylianos I. Venieris, and Nicholas D. Lane.
Deep Neural Network–based Enhancement for Image and
Video Streaming Systems: A Survey and Future Directions.
ACM Computing Surveys (CSUR), 54:1 – 30, 2021. 1

[21] Jingyun Liang, Guolei Sun, K. Zhang, Luc Van Gool, and
Radu Timofte. Mutual Affine Network for Spatially Variant
Kernel Estimation in Blind Image Super-Resolution. IEEE
International Conference on Computer Vision (ICCV), 2021.
12

[22] Jingyun Liang, K. Zhang, Shuhang Gu, Luc Van Gool, and
Radu Timofte. Flow-based Kernel Prior with Application
to Blind Super-resolution. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 2, 3, 4, 5, 7,
12

[23] Weixin Liang, Zixuan Liu, and Can Liu. Dawson: A domain
adaptive few shot generation framework. arXiv preprint
arXiv:2001.00576, 2020. 2

[24] Zhengxiong Luo, Y. Huang, Shang Li, Liang Wang, and Tie-
niu Tan. Unfolding the Alternating Optimization for Blind
Super Resolution. In Advances in Neural Information Pro-
cessing Systems (NeurIPS). 2020. 1, 6, 7

[25] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau,
Zhen Wang, and Stephen Paul Smolley. Least Squares Gen-
erative Adversarial Networks. IEEE International Confer-
ence on Computer Vision (ICCV), 2017. 4

[26] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In IEEE International Conference on Computer
Vision (ICCV), 2001. 5

[27] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations (ICLR), 2018. 11

[28] Seobin Park, Jin-Su Yoo, Donghyeon Cho, J. Kim, and T.
Kim. Fast Adaptation to Super-Resolution Networks via
Meta-Learning. In European Conference on Computer Vi-
sion (ECCV), 2020. 2

[29] Dongwei Ren, K. Zhang, Qilong Wang, Qinghua Hu, and
Wangmeng Zuo. Neural Blind Deconvolution Using Deep
Priors. IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2, 3, 6, 7

[30] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network.

9

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1874–1883, 2016. 1

[31] Assaf Shocher, N. Cohen, and M. Irani. “Zero-Shot” Super-
Resolution Using Deep Internal Learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 2

[32] Jae Woong Soh, Sunwoo Cho, and N. I. Cho. Meta-Transfer
Learning for Zero-Shot Super-Resolution. IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 2, 4, 11, 12

[33] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu,
and Yunhe Wang. Efficient Residual Dense Block Search for
Image Super-resolution. In Thirty-Fourth AAAI Conference
on Artifical Intelligence (AAAI), 2020. 1

[34] R. Timofte et al. NTIRE 2017 Challenge on Single Im-
age Super-Resolution: Methods and Results. In IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2017. 5

[35] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Deep Image Prior. IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2018. 3

[36] Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu
Xu, Jungang Yang, Wei An, and Yulan Guo. Unsuper-
vised Degradation Representation Learning for Blind Super-
Resolution. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 1, 6, 7

[37] Jianchao Yang, John Wright, Thomas S. Huang, and Yi Ma.
Image Super-resolution via Sparse Representation. Trans.
Img. Proc. (TIP), 19(11):2861–2873, 2010. 5

[38] Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu
Meng, and Kwan-Yee K Wong. Blind Image Super-
resolution with Elaborate Degradation Modeling on Noise
and Kernel. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2,
4, 6

[39] K. Zhang, L. Gool, and R. Timofte. Deep Unfolding Net-
work for Image Super-Resolution. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
5, 12, 14, 15, 16

[40] Maria Zontak and Michal Irani. Internal statistics of a single
natural image. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2011. 5

10

A. Background: Kernel Mismatch
In real-world settings, the degradation process can often

be complex, involving multiple stages of blurring, down-
sampling and noise addition. For cases in which this process
is not known, super-resolution models are required to be ro-
bust to unknown degradations, i.e. they need to be able to
upsample any natural image in the wild. To this end, Efrat et
al.[9] first shed light on the kernel mismatch phenomenon:
how the super-resolved image would be impacted if the es-
timated kernel differs from the ground-truth kernel, which
is assumed to be Gaussian, regardless of the given prior.
Specifically, their study demonstrated that a smoother ker-
nel relative to its corresponding ground-truth kernel leads
to sharper images while a sharper kernel leads to blurry im-
ages. Hence, accurately estimating the ground-truth kernel
is crucial in order for the downstream non-blind SR model
to produce visually pleasing super-resolved images.

B. MetaKernelGAN Details
Models. For our generator, we employ a deep linear archi-
tecture with six convolutional layers and without non-linear
activations. The layers have kernel sizes of [7, 3, 3, 1, 1, 1],
a stride of 2 for the last layer and 1 for the earlier layers,
representing the linear operation of applying a blur kernel
of size 11× 11 followed by the subsampling operation. For
our discriminator, we adopt KernelGAN’s architecture: a
7-layer discriminator with kernel sizes of [7, 1, 1, 1, 1, 1, 1],
each followed by a Spectral normalization [27], batch nor-
malization [15], and ReLU activation, except for the last
layer which consists of a sigmoid activation at the end.
Weighting the Interval Loss Optimization Steps. Follow-
ing MZSR [32], we weight each interval loss optimization
step equally at the beginning, then slowly decaying the pre-
ceding adaptation steps and converging the weight to the
last adaptation step:

w← GetIntervalLossWeights(j) where

w[0], · · · ,w[Nval − 2]] =

min(
1

Nval
− j · 3

Nval · 10000
,
0.03

Nval
)

w[Nval − 1] = 1−
Nval−2∑
m=0

wm

where j ∈ [1, Nsteps] is the meta-objective step and Nval is
the total number of interval loss evaluation for each task, as
used in Alg. 1.
Inference Algorithm. To adapt the meta-learned GAN on
a new LR image (Alg. 2), we initialize G and D with the
meta-learned base parameters, θ̂G and θ̂D (lines 1-2). We
then adapt these parameters using our task adaptation loss
as per Eq. (5) for Nadapt steps (line 3) and the estimated
kernel is derived from MetaKernelGAN’s generator as per
Eq. (3) (line 5).

Algorithm 2: Inference of MetaKernelGAN

Input: Input image ILR

Number of steps Nadapt

Meta-learned θ̂G and θ̂D
Output: Kernel estimate k∗ for the given image

1 θG ← θ̂G, θD ← θ̂D ▷ Initialize G and D with meta-learned
parameters

2 for l in [1, Nadapt] do ▷ Adaptation steps over the given image ILR

3 Compute adapted parameters (Eq. (4)):
θG ← θG − αG∇θG

Ltask
G (θD, θG)

θD ← θD − αD∇θD
Ltask

G (θD, θG)

4 end
5 k̂ ← DK(θG) ▷ Derive kernel estimate

B.1. MetaKernelGAN Flow

θi
G θi

D

Ltask
G

Ltask
D

Update θi
G

(Line 9)

Update θi
D

(Line 9)

Lmeta
G Lmeta

Dk

Append to b[Ti][G]
(Line 11)

Append to b[Ti][D]
(Line 12)

For Nadapt
steps

(Lines 6-15)

Update θG
(Line 17)

Update θD
(Line 17)

w
(Line 16)

Sample task Ti

(Line 4)

For Nsteps
iterations

(Lines 2-18)

Every Nval steps
(Lines 10-13)

Figure 7. Flow chart of Algo. 1.

Fig. 7 shows the flow diagram of MetaKernelGAN meta-
training stage shown in Algo. 1, which is described in Sec-
tion. 3.1. Green & red lines represent updates to the gener-
ator the discriminator respectively, with dotted lines repre-
senting the task adaptation stage and solid lines represent-
ing the meta-optimization stage. The blue lines represent
the weighting of the meta-objectives.

B.2. MetaKernelGAN Task Design

The task-related component of our framework comprise:
i) the tasks T , and ii) the task probability distribution p(T)
that determines the strategy of sampling a task from the can-
didate tasks, i.e. T i ∼ p(T).
Task T i. Each task T i =

〈
ILR,i, k

〉
consists of an LR

image and a blur kernel k. The LR image is formed in
three steps: i) an HR image, IHR,i, is first randomly sam-
pled from the given dataset; ii) random augmentation op-

11

erations, such as flipping or rotation, are applied on the
selected HR image; and, finally, iii) an LR image is ob-
tained by applying kernel k on the HR image. Key to
our task setup is that each task encapsulates both a sup-
port and a query set, by containing multiple patches with
the same blur kernel. We denote the support/query set
as Di

s ∪ Di
q = {(pLR, k)} ∃pLR∈patches(ILR,i), i.e. the

support (Di
s) and query (Di

q) sets consist of different patches
from the same LR image. With this formulation, the meta-
learning method can learn from multiple patches that have
been degraded with the same kernel, exploiting in this man-
ner the internal patch recurrence of the given image. The
complete set of tasks T is defined using a dataset of HR
images and a distribution of blur kernels.
Task Probability Distribution p(T). The distribution
p(T) controls our task sampling strategy and encompasses
both the blur kernel and the HR image selection. First, the
kernel k is chosen by uniformly sampling from a predefined
distribution, e.g. an anisotropic Gaussion distribution. Sim-
ilarly, the HR image is uniformly sampled from the given
training dataset. After the sampling process, the final task
is constructed by applying k to an augmented version of the
HR image to produce its LR counterpart, ILR,i.
Patch Sampling Strategy. To evaluate the LLSGAN term
used by both the task adaptation loss and the meta-objective
of our method, patches are sampled from a task’s LR im-
age. To sample an image patch, pLR,i, we follow a similar
strategy as KernelGAN: we assign a selection probability
to each patch in ILR,i based on its gradient magnitude. In
this manner, patches with higher gradient magnitude have
a higher probability to be selected. The rationale behind
this strategy is that using flat patches, i.e. with low gradient
magnitude, would aggravate the ill-posedness of the ker-
nel estimation problem, leading to a typical isotropic Gaus-
sian kernel [21]. Specifically, KernelGAN utilizes the gra-
dient magnitude of ILR,i and its bicubic upsampled super-
resolved image to determine each patch’s selection proba-
bility for the discriminator and generator respectively. Un-
like KernelGAN, we utilize the gradient magnitude of ILR,i

for the generator instead and take the top-left sub-patch for
the discriminator. This empirically results in a slight boost
in performance possibly because the discriminator can learn
to discriminate between two patches from the same region
in the image, as opposed to two randomly sampled regions
as implemented in KernelGAN.

C. Evaluation & Reproducibility Details
Hyperparameter Details. We use a task batch size of 1.
We divide αG by 10 after 50 & 200 adaptation steps dur-
ing inference. For αG and αD, we tried values [0.1, 0.2,
0.5, 0.01, 0.02, 0.05] and picked the ones with the highest
performance: αG = 0.01, αD = 0.2.
Implementation Details. MetaKernelGAN was built on

top of PyTorch v1.7 and learn2learn [3], an open-source
meta-learning framework which we extended to support
MetaKernelGAN’s components and algorithms. We further
integrated part of the code of FKP [22], MZSR [32], Ker-
nelGAN [5], and USRNet [39].
Baseline Details. Following KernelGAN-FKP, we replace
one autoencoder in Double-DIP with a fully-connected net-
work to model the kernel. All prior work results are re-
ported using the associated codebases4.
Subpixel Alignments & Kernel Shifts. We shift the eval-
uation set of LR images by shifting its blur kernel fol-
lowing [39] when evaluating all explicit kernel estimation
approaches, including MetaKernelGAN. However, the as-
sumed center of mass of the kernel is slightly different in
previous implicit degradation estimation works. Hence, to
avoid subpixel misalignments in these cases, we regenerate
the evaluation set of LR images by shifting its kernel fol-
lowing [5] when evaluating IKC, DAN, and DASR.
Difference in Performance for DIP-FKP. The original
FKP work uses a different kernel distribution to evalu-
ate DIP-FKP and KernelGAN-FKP. For fair comparison,
we use the same distribution when evaluating all previous
explicit kernel estimation works. Specifically, we adopt
the kernel distribution originally proposed for KernelGAN-
FKP.
Covariance of Estimated Kernel. We derive the dis-
cretized kernel k̂ from Eq. (2) as an m×m matrix and calcu-
late the covariance matrix as Σ̂ =

[
a c
c b

]
where a= Var(colk̂),

b = Var(rowsk̂) and c = Covar(colk̂, rowsk̂).

D. Ablation

Meta-learning the Generator. Fig. 8 shows the case where
we only meta-learn the generator and not the discriminator.
As the discriminator is trained from scratch for each image
during evaluation, the meta-trained generator dominates the
training, leading to inadequate generator feedback from the
discriminator and in turn to inferior kernel accuracy.
Number of Iteration Steps. We meta-trained MetaKernel-
GAN with Nadapt=10, 25, 50 and showed the Kernel PSNR
and LK-COV for ×2 upsampling in Table. R1. We observe
that the kernel has not converged when Nadapt=10, resulting
in worse kernel performance. Nadapt=50 also leads to worse
performance, possibly attributed to the first-order approxi-
mation of FOMAML which is not suited for long inner-loop
trajectories.

4https://github.com/JingyunLiang/FKP/

https://github.com/greatlog/DAN

https://github.com/yuanjunchai/IKC

https://github.com/ShuhangGu/DASR

https://github.com/zsyOAOA/BSRDM

12

https://github.com/JingyunLiang/FKP/
https://github.com/greatlog/DAN
https://github.com/yuanjunchai/IKC
https://github.com/ShuhangGu/DASR
https://github.com/zsyOAOA/BSRDM

0 250 500 750 1000
Steps

40

45

50

K
er

ne
l

P
S

N
R

0 250 500 750 1000
Steps

5

10

15

LK
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000
Steps

36

38

40

K
er

ne
l

P
S

N
R

0 250 500 750 1000
Steps

5

10
LK
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000
Steps

40

45

50

K
er

ne
l

P
S

N
R

0 250 500 750 1000
Steps

5

10

15

LK
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000
Steps

36

38

40

K
er

ne
l

P
S

N
R

0 250 500 750 1000
Steps

5

10

15

LK
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000
Steps

40.0

42.5

45.0

47.5

K
er

ne
l

P
S

N
R

0 250 500 750 1000
Steps

5

10

15

LK
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

Figure 8. Intermediate kernel results for every adaptation iteration
(×2 upsampling for 0802.png, 0833.png, 0838.png, 0857.png, and
0853.png in DIV2K).

Method Nadapt Set14 B100 Urban100 DIV2K

MetaKernelGAN 10 44.72/2.56 43.42/2.99 45.99/2.39 46.88/2.31
MetaKernelGAN 25 46.23/2.44 45.94/2.38 47.37/2.16 48.00/2.08
MetaKernelGAN 50 45.49/2.49 45.41/2.65 46.47/2.42 46.81/2.37

Table R1. Average Kernel PSNR/LK-COV on SR benchmarks
across five runs for different Nadapt for ×2 upsampling.
E. MetaKernelGAN Adaptability to Images

with Limited Internal Information.

LR images are severely limited in internal informa-
tion when their resolution is small, resulting in the fall-
back on the learned kernel. This is often the case in
i) ×4 upsampling, where the LR images are tiny, and
ii) especially in smaller resolution datasets. To quan-
tify this, we compare the estimated discretized covari-
ance matrix of the adapted kernel after 200 steps, Σ̂Est200,

to that of the initial learned kernel, Σ̂Est0, and that of
the ground-truth kernel, Σ̂GT. Specifically, we compute
LT = max(LK-COV(Σ̂Est200, Σ̂GT) − LK-COV(Σ̂Est200, Σ̂Est0), 0),
where LK-COV(a, b) =

∑N
x,y

∣∣Σ̂a
x,y − Σ̂b

x,y

∣∣, in three equal-
sized datasets B100, Urban100, and DIV2K, representing
small, medium, and large image resolutions, respectively.
By definition, the higher LT is, the closer the adapted ker-
nel is to the initial kernel relative to its distance from the
GT kernel and the higher the fallback rate. For ×2 upsam-
pling, the mean LT is 0.0 for all three datasets, indicating
no fallback. For ×4, the mean LT for B100, Urban100, and
DIV2K is 4.98, 3.78, and 3.25, respectively, indicating that
lower-resolution images lead to more frequent fallback.

F. Additional Qualitative Results
Fig. 9 & Fig. 10 show the comparisons of both the ker-

nel and image among the explicit kernel estimation methods
on our benchmark evaluation datasets for ×2 and ×4 up-
sampling respectively. Fig. 12 show more examples high-
ighting that DSKernelGAN is more susceptible to adapt to
faulty kernels than MetaKernelGAN as the former doesn’t
learn from the adaptation process. Lastly, we show more
real-world results among both implicit and explicit degra-
dation methods from images downloaded from the Internet
in Fig. 13.

13

Figure 9. Comparison of estimated kernel, along with its image ×2 upsampled using USRNet [39], among explicit kernel estimation
methods across different benchmark datasets. Zoom in for best results.

14

Figure 10. Comparison of estimated kernel, along with its image ×4 upsampled using USRNet [39], among explicit kernel estimation
methods across different benchmark datasets. Zoom in for best results. Part 1 of 2.

15

Figure 10. Comparison of estimated kernel, along with its image ×4 upsampled using USRNet [39], among explicit kernel estimation
methods across different benchmark datasets. Zoom in for best results. Part 2 of 2.

16

Figure 11. Kernel after 25, 50, 100, 200 adaptation steps for ×2
upsampling on 86000 of B100, img036 of Urban100, 0821 and
0824 of DIV2K (top to bottom).

Figure 12. Kernel after 25, 50, 100, 200 adaptation steps for ×4
upsampling on monarch and ppt3 of Set14, and 0879 and 0824 of
DIV2K (top to bottom).

17

Figure 13. Real-world visual quality comparison on×4 upsampling among models. Zoom in for best results. No ground truth is available.

18

	. Introduction
	. Related Work
	. Meta-Learning for Kernel Estimation
	. MetaKernelGAN

	. Experiments
	. Comparison with Patch Recurrence Methods
	. Comparison with Joint Learning Methods
	. Comparison with Implicit Estimation
	. Kernel Analysis

	. Discussion
	. Conclusion
	. Background: Kernel Mismatch
	. MetaKernelGAN Details
	. MetaKernelGAN Flow
	. MetaKernelGAN Task Design

	. Evaluation & Reproducibility Details
	. Ablation
	. MetaKernelGAN Adaptability to Images with Limited Internal Information.
	. Additional Qualitative Results

